Human group IIA secretory phospholipase A_2 potentiates Ca^{2+} influx through L-type voltage-sensitive Ca^{2+} channels in cultured rat cortical neurons

Tatsurou Yagami, Keiichi Ueda, Kenji Asakura, Hitoshi Nakazato, Satoshi Hata, Takayuki Kuroda, Toshiyuki Sakaeda, Gaku Sakaguchi, Naohiro Itoh, Yutaka Hashimoto and Yozo Hori

Discovery Research Laboratories, Shionogi and Co. Ltd, Osaka, Japan

Abstract

Mammalian group IIA secretory phospholipase A₂ (sPLA₂-IIA) generates prostaglandin D₂ (PGD₂) and triggers apoptosis in cortical neurons. However, mechanisms of PGD₂ generation and apoptosis have not yet been established. Therefore, we examined how second messengers are involved in the sPLA₂-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. sPLA₂-IIA potentiated a marked influx of Ca²⁺ into neurons before apoptosis. A calcium chelator and a blocker of the L-type voltage-sensitive Ca²⁺ channel (L-VSCC) prevented neurons from sPLA₂-IIA-induced neuronal cell death in a concentration-dependent manner. Furthermore, the L-VSCC blocker ameliorated sPLA₂-IIA-induced morphologic alterations and apoptotic features such as condensed chromatin and fragmented DNA. Other blockers of VSCCs such as N type and P/Q types did not affect the

neurotoxicity of sPLA₂-IIA. Blockers of L-VSCC significantly suppressed sPLA₂-IIA-enhanced Ca²⁺ influx into neurons. Moreover, reactive oxygen species (ROS) were generated prior to apoptosis. Radical scavengers reduced not only ROS generation, but also the sPLA₂-IIA-induced Ca²⁺ influx and apoptosis. In conclusion, we demonstrated that sPLA₂-IIA potentiates the influx of Ca²⁺ into neurons via L-VSCC. Furthermore, the present study suggested that eicosanoids and ROS generated during arachidonic acid oxidative metabolism are involved in sPLA₂-IIA-induced apoptosis in cooperation with Ca²⁺.

Keywords: apoptosis, Ca^{2+} influx, group IIA secretory phospholipase A₂, L-type voltage-sensitive Ca^{2+} channel, nimodipine, reactive oxygen species.

J. Neurochem. (2003) 85, 749-758.

Secretory phospholipase A₂s (sPLA₂s) are a growing family of enzymes that cleave the sn-2 fatty acyl ester bond of glycerophospholipids to yield a fatty acid and a lysophospholipid (Vadas and Pruzanski 1986; Arita et al. 1989). sPLA₂s have several common characteristics, including a relatively low molecular mass (13-18 kDa), the presence of six to eight disulfide bonds, an absolute catalytic requirement for millimolar concentration of Ca^{2+} , and a broad specificity for phospholipids with different polar head groups and fatty acid chains (Tishchfield 1997; Lambeau and Lazdunski 1999). Among sPLA₂s, group IIA sPLA₂ (sPLA₂-IIA) is thought to be one of the key enzymes in the pathogenesis of inflammatory disease, because its local and systemic levels are elevated in diseases, such as acute lung injury (Furue et al. 1999; Koike et al. 2000). An sPLA₂ inhibitor was reported to suppress lung injury induced by oleic acid and intestinal ischemia reperfusion (Furue et al. 1999; Koike et al. 2000).

Received June 7, 2002; revised manuscript received January 8, 2003; accepted January 21, 2003.

Address correspondence and reprint requests to Dr Tatsurou Yagami, Discovery Research Laboratories, Shionogi & Co., Ltd, 12–4, Sagisu 5-Choume, Fukushima-ku, Osaka 553–0002, Japan.

E-mail: tatsurou.yagami@shionogi.co.jp

Abbreviations used: AD, Alzheimer's disease; AMPA, α-amino-2hydroxy-5-methyl-4-isoxazolepropionic acid; Aβ, amyloid β protein; AP-7, 2-amino-4-phosphonobutyrate; BAPTA-AM, acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-*N*,*N*,*N'N'*-tetra-acetic acid; CPP, 3-[(+/–)-2-carboxypiperazine-4-yl]propyl-1-phosphonate; [Ca²⁺]i, concentration of intracellular Ca²⁺; DCFDA, 2',7'-dichlorofluorescin diacetate; DiCl, dichloro kynurenic acid; IC₅₀, concentration giving 50% inhibition: L-VSCC, L-type VSCC; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye; NBQX, 2,3-dihydroxy-6-nitro-7sulfamoylbenzo(f)quinoxaline; N-VSCC, N-type VSCC; PCP, phencyclidine; PG, prostaglandin; PLA₂, phospholipase A₂; P/Q-VSCC, P/Q-type VSCC; ROS, reactive oxygen species; sPLA₂, secretory PLA₂; sPLA₂-IB, group IB sPLA₂; sPLA₂-IIA, group IIA sPLA₂; TUNEL, TdT-mediated dUTP-biotin nick-end labeling; VSCC, voltage-sensitive calcium channel.

sPLA₂-IIA gene expression is induced in the ischemic brain (Lauritzen et al. 1994). It is strictly localized to the hippocampus and the cerebral cortex, in which neurons are vulnerable to ischemia (Smith et al. 1984). Recently, we have found that sPLA₂-IIA activity in the cerebral cortex was increased after ischemia, and was significantly suppressed by a potent sPLA₂-specific inhibitor, indoxam (Yagami et al. 2002a). Indoxam prevented the neurodegeneration in the penumbra after ischemia, in which apoptosis is caused (Umemura et al. 1995). sPLA2-IIA caused cell death in primary cultures of rat cortical neurons. Morphologic and ultrastructural characteristics of neuronal cell death by sPLA2-IIA were apoptotic, as evidenced by condensed chromatin and fragmented DNA. Prior to apoptosis, sPLA₂-IIA liberated free fatty acids, including arachidonic acid, and generated prostaglandin D₂ (PGD₂) from neurons. Indoxam not only suppressed arachidonic acid release and PGD₂ generation, but also prevented neurons from sPLA2-IIA-induced neuronal cell death (Yagami et al. 2002a).

The injury and death of neurons that occur as the result of both acute insults (e.g. stroke) and chronic neurodegenerative disorders [e.g. Alzheimer's disease (AD)] appear to involve disturbances in cellular calcium homeostasis and reactive oxygen species (ROS) metabolism (Jesberger and Richardson 1991; Mattson et al. 1993; Choi 1995). Dysregulation of calcium and ROS metabolism can be initiated by activation of receptors for neurotoxins such as glutamate and amyloid β protein (A β). Calcium enters the cytoplasm through voltagedependent and ligand-gated channels in the plasma membrane (Tsien et al. 1991). N-methyl-D-aspartate (NMDA) receptors (Lipton and Rosenberg 1994) and the L-type voltage-sensitive Ca²⁺ channel (L-VSCC; Ueda et al. 1997a) were prominently involved in glutamate- and AB-induced neuronal cell death, respectively. Glutamate causes neuronal cell death via necrosis and apoptosis (Nicotera and Lipton 1999), whereas A β does so via apoptosis (Ueda *et al.* 1996). Furthermore, neurotoxic non-mammalian sPLA₂ triggers influx of Ca²⁺ into neurons (Clapp et al. 1995). Taken together, these studies suggest that the excess influx of Ca²⁺ into neurons might be involved in the mammalian sPLA2-IIA-induced neuronal cell death.

In the present study, we ascertained whether $sPLA_2$ -IIA dysregulates Ca^{2+} homeostasis in rat cortical neurons. Here, we provide the first evidence that $sPLA_2$ -IIA potentiates the Ca^{2+} influx through L-VSCC, thereby inducing neurotoxicity.

Materials and methods

Materials

Nimodipine was synthesized at the Shionogi Research Laboratories (Osaka, Japan; Shimizu *et al.* 1990). Human sPLA₂-IIA was prepared as described previously (Kramer *et al.* 1989).

Arabinosylcytosine C, acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetra-acetic acid (BAPTA-AM), poly-Llysine, vitamin E, probucol, butylated hydroxytoluene, chlorpromazine, D-(-)-2-amino-4-phosphonobutyrate (AP-7), CPP (3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonate), DiCl (dichloro kynurenic acid), NBQX [2,3-dihydroxy-6-nitro-7sulfamoylbenzo-(f)quinoxaline], and PCP (phencyclidine) were purchased from Sigma (St Louis, MO, USA). Dulbecco's modified Eagle's medium, Leibovitz's L-15 medium, trypsin, deoxyribonuclease I, fetal bovine serum, horse serum, penicillin, and streptomycin were obtained from Gibco (Grand Island, NY, USA). Hoechst 33258 fluorescent dye was purchased from Molecular Probes (Eugene, OR, USA). 2',7'-Dichlorofluorescin diacetate (DCFDA) was purchased from Kodak (Tokyo, Japan). ω-Agatoxin GVIA, ω-conotoxin GVIA, and ω-conotoxin MVIIC were purchased from the Peptide Institute (Osaka, Japan).

Measurements of sPLA2-IIA activity

PLA₂ activity was measured with a phosphatidyl glycerol/sodium cholate mixed micelle assay (PG/Chol assay; Tojo *et al.* 1993). The specific activity of sPLA₂-IIA was 765.87 µmol/min/mg protein. The final activity of sPLA₂-IIA (1 µM) was 10.7 µmol/min/mL in the culture medium.

Animals

The following experimental procedures used were approved by the Institutional Animal Care and Use Committee at the Discovery Research Laboratories of Shionogi and Co. Ltd, and all efforts were made to minimize the number of animals used and their suffering. Pregnant Sprague–Dawley rats were used. The rats were housed individually in macrolon cages with free access to food and water and maintained on a 12-h light–dark cycle, at 25°C room temperature. All experiments were carried out according to the guidelines of the European Community's Council for Animal Experiments.

Tissue cultures

Neuronal cell cultures were prepared from cerebral cortices of day-19 Sprague–Dawley rat embryos as previously reported (Yagami *et al.* 2002c). Cerebral cortices were dissociated in isotonic buffer with 4 mg/mL trypsin and 0.4 mg/mL deoxyribonuclease I (Ueda *et al.* 1994). Cells were plated at a density of 2.5×10^5 cells/cm² on poly-L-lysine-coated dishes in conditioning medium, Leibovitz's L-15 medium supplemented with 5% fetal bovine serum, and 5% horse serum at 37°C in 5% CO₂ and 9% O₂. Cultures were treated with 0.1 µM arabinosylcytosine C on day 1 and used for experiments on day 2 after plating.

Analysis of neuronal survival

Neurons $(2.5 \times 10^5 \text{ cells/cm}^2)$ were treated with sPLA₂-IIA in the presence or absence of various compounds at 37°C. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye (MTT) reduction assay reflecting mitochondrial succinate dehydrogenase activity was employed for assessment of neurotoxicity of sPLA₂-IIA, as previously reported (Yagami *et al.* 2002d).

Measurement of PGD₂

PGD₂ was measured as previously reported (Yagami *et al.* 2002b). Supernatants of culture medium (1 mL) were mixed homogenously

with cold ethanol (4 mL). The mixture was centrifuged at 1500 g at 4°C for 10 min for removal of the particulate matter. Supernatants were diluted with an appropriate volume of distilled water to yield a final concentration of 10% ethanol, and the pH was adjusted to 3.5-4.0. Samples were loaded onto reversed-phase (C18) Sep-Pack cartridges, which had been prepared by washing with ethanol followed by distilled water. Samples were washed onto the Sep-Pak with 15 mL of 10% aqueous ethanol, followed by 15 mL of petroleum ether. Samples were extracted with 5 mL of methyl formate. The methyl formate effluents were pooled and evaporated with a heating module and dissolved in radioimmunoassay (RIA) buffer (50 mM phosphate buffer, pH 7.3, with 0.1% gelatin and 0.1% azide). PGD₂ was measured with their respective RIA kits (in duplicate/sample).

Fluoromicroscopic analysis

Condensation of chromatin was assessed as previously described (Yagami *et al.* 2001b). Neurons $(2.5 \times 10^5 \text{ cells/cm}^2)$ were treated with 1 μ M sPLA₂-IIA in the presence or absence of 10 μ M indoxam or 10 μ M nimodipine at 37°C for 48 h. The culture medium was exchanged with phosphate-buffered saline (PBS) containing 10 μ M Hoechst 33258 fluorescent dye. Cells were incubated for 10 min at 37°C in the dark and washed with PBS. Stained nuclei were categorized as follows: (i) nuclei with homogeneously stained chromatin; (ii) nuclei with condensed chromatin, crescent-shaped areas of condensed chromatin often located near the periphery of the nucleus; and (iii) fragmented nuclei, more than two condensed micronuclei within the area of a neuron.

In situ labeling of nuclear DNA fragments

Neurons $(2.5 \times 10^5 \text{ cells/cm}^2)$ were treated with 1 μ M sPLA₂-IIA in the presence or absence of 10 μ M indoxam or 10 μ M nimodipine at 37°C for 48 h. As previously reported (Yagami *et al.* 2003a), neurons were stained by the TUNEL technique (TdT-mediated dUTP-biotin nick end-labeling). Apoptotic cells could be distinguished morphologically from necrotic cells by the presence of condensed brown nuclei.

Measurement of Ca²⁺ influx

Ca²⁺ influx into cultured cells was measured as previously described (Yagami *et al.* 2003b). Neurons $(2.5 \times 10^5 \text{ cells/cm}^2)$ were treated with 1 µm sPLA₂-IIA in the presence or absence of various compounds at 37°C. After treatment, neurons were pre-incubated for 5 min at 37°C with basal saline containing 145 mM NaCl, 10 mM Tris–HCl (pH 7.4), 0.4 mM KH₂PO₄, 1.2 mM MgCl₂, 3.1 mM KCl, 10 mM glucose and 0.5 mM CaCl₂. The cells were then exposed to basal saline containing ⁴⁵CaCl₂ (200 kBq/mL). Ca²⁺ uptake was terminated after 10 s of incubation by washing twice with basal saline without glucose, and then the cells were solubilized with 1 mL sodium dodecyl sulfate (0.5%) and deoxycholate (0.05%). Samples were mixed with scintillation fluid (Picofluor 40; Perkin Elmer Life Science Products, Boston, MA, USA) and quantified by a liquid scintillation counter. Data are given as percentages of corresponding vehicle-treated values.

Measurement of ROS

Intracellular ROS were measured by DCFDA assay (Ueda *et al.* 1997a). Neurons $(2.5 \times 10^5 \text{ cells/cm}^2)$ were treated with 1 μ M sPLA₂-IIA in the presence or absence of various compounds at

37°C. Neurons were loaded with 1 mM DCFDA for 20 min 15 h later, and then intracellular reactive oxygen species were measured. Data are given as percentages of DCFDA fluorescence of corresponding vehicle-treated values.

Statistical analysis

Data are given as means \pm SEM (n = 4). All experiments were carried out at least twice with comparable results. Presented results were representative of all experiments. Data were analyzed statistically with Student's non-paired *t*-test for comparison with the control group. Data on various inhibitors and blockers groups were analyzed statistically by use of two-way ANOVA followed by Dunnett's test for comparison with the sPLA₂-IIA group as previously reported (Yagami *et al.* 2001a). Concentration giving 50% inhibition (IC₅₀) values were calculated by Microsoft Excel Fit as previously reported (Asakura *et al.* 1999).

Results

Effects of a calcium chelator on sPLA₂-IIA-induced neuronal cell death

Primary cultures of dissociated cortical neurons were exposed to sPLA₂-IIA, and neuronal cell death was quantified 48 h later (Fig. 1). sPLA₂-IIA at doses less than 0.1 μ M did not reduce neuronal cell survival. Increasing concentrations of sPLA₂-IIA above 0.1 μ M resulted in a significant increase in neuronal cell death in a dose-dependent manner, with a half-maximal concentration of 1.1 μ M (Fig. 1a). A calcium chelator, BAPTA-AM, attenuated the neurotoxicity of sPLA₂-IIA in a concentration-dependent manner (Fig. 1b). These results suggested that calcium mobilization might contribute to the sPLA₂-IIA-induced neuronal cell death.

Effect of sPLA₂-IIA on the influx of Ca²⁺ into neurons

sPLA₂-IIA triggered neuronal cell death in a time-dependent manner after 24 h (Fig. 2a). Prior to cell death, the enzyme liberated arachidonic acid and generated PGD₂, which possesses neurotoxicity (Yagami *et al.* 2002a). PGD₂ was not generated within 10 h, but was produced at 15 h after sPLA₂-IIA treatment (Fig. 2b). On the other hand, sPLA₂-IIA increased the influx of Ca²⁺ at 6 h, reached a peak at 18 h, and then elevated the level of Ca²⁺ influx persistently (Fig. 2c). Thus, sPLA₂-IIA potentiated the influx of Ca²⁺ into neurons, generated PGD₂, and caused neuronal cell death.

Effects of a sPLA₂-IIA inhibitor and glutamate receptor blockers on sPLA₂-IIA-induced neuronal cell death

Indoxam, an indolizine derivative, was created as a novel sPLA₂ inhibitor by the Shionogi Research Laboratories (Hagishita *et al.* 1996). Indoxam inhibited the enzymatic activity of sPLA₂-IIA (IC₅₀ = 1.5 nM; Yokota *et al.* 1999).

Fig. 1 Effect of a Ca²⁺ chelator on sPLA₂-IIA-induced neuronal cell death. (a) Neurotoxicity of sPLA₂-IIA: cortical cultures were treated with of sPLA₂-IIA at the indicated concentrations. Control value of MTT-reducing activity was 0.41 ± 0.02. MTT-reducing activity was determined 48 h later. (b) Effect of Ca²⁺ chelator: cortical cultures were treated with 1 μ M sPLA₂-IIA in the presence of BAPTA-AM at the indicated concentrations. MTT-reducing activity was determined 48 h later. Control value of MTT-reducing activity was determined 48 h later. Control value of MTT-reducing activity was determined 48 h later. Control value of MTT-reducing activity was 0.33 ± 0.02. The cell density of control cultures was 2.5 ± 0.2 × 10⁵ cells/cm². Data are expressed as means ± SEM (*n* = 4). ***p* < 0.01, compared with control (no addition of sPLA₂-IIA), ##*p* < 0.01, compared with sPLA₂-IIA alone by ANOVA followed by Dunnett's test.

The inhibitor exhibited protective effects against the neurotoxicity of sPLA₂-IIA (Fig. 3a). Indoxam significantly prevented neurons from undergoing sPLA₂-IIA-induced cell death as previously reported (Yagami *et al.* 2002a).

In cortical neurons, neuronal cell death is induced synergistically by non-mammalian sPLA₂ and glutamate (Kolko *et al.* 1996). To ascertain whether glutamate affects the neurotoxicity of sPLA₂-IIA, we examined the effect of glutamate receptor blockers on sPLA₂-IIA-induced neuronal cell death. MK-801 (a non-competitive NMDA receptor blocker), AP-7 (a competitive NMDA receptor blocker), CPP (a non-competitive NMDA receptor blocker), DiCl (a non-competitive NMDA receptor blocker), and NBQX [a competitive α -amino-2-hydroxy-5-methyl-4-isoxazolepropronic acid (AMPA)/kinate receptor blocker] did not attenuate the neurotoxicity of sPLA₂-IIA (Fig. 3a). It is unlikely that glutamate was involved in the neurotoxicity of sPLA₂-IIA.

Fig. 2 Generation of PGD₂ and influx of Ca²⁺ during sPLA₂-IIAinduced neuronal cell death. Cortical cultures were treated with 1 µm sPLA₂-IIA. MTT-reducing activity (a), PGD₂ (b), and Ca²⁺ influx (c) were measured at the indicated time points after sPLA₂-IIA treatment. Control value of MTT-reducing activity was 0.39 ± 0.02. Control value of PGD₂ was 64 ± 9 pg/mL. Control value of Ca²⁺ influx was 5216 ± 449 cpm. The cell density of control cultures was 2.5 ± 0.2 × 10⁵ cells/cm². Data are expressed as means ± SEM (*n* = 4). **p* < 0.05, ***p* < 0.01, compared with control (time = 0 h) by ANOVA followed by Dunnett's test.

Effects of VSCC blocker on sPLA₂-IIA-induced neuronal cell death

Besides glutamate receptors, L-VSCC blockers are associated with neurotoxicity (Ueda *et al.* 1997a). To ascertain whether L-VSCC blockers affect neurotoxicity of sPLA₂-IIA, we evaluated effects of VSCC blockers on sPLA₂-IIA-induced neuronal cell death. Neither an N-type

Fig. 3 Effects of calcium channel blockers on sPLA₂-IIA-induced neuronal cell death. (a) Glutamate receptor blockers: neurons were treated with 1 μM sPLA₂-IIA in the absence or presence of 10 μM indoxam or 30 μM various glutamate receptor blockers. Control value of MTT-reducing activity was 0.36 ± 0.02. MTT-reducing activity was measured 48 h later. Data are expressed as means ± SEM (*n* = 4). Comparisons were made by ANOVA followed by Dunnett's test. ***p* < 0.01, compared with control. ##*p* < 0.01, compared with sPLA₂-IIA alone. (b) VSCC blockers: Neurons were treated with 1 μM sPLA₂-IIA in the absence or presence of 10 μM indoxam or 3 μM VSCC inhibitors. MTT-reducing activity was measured 48 h later. Control value of MTT-reducing activity was 0.36 ± 0.02. Data are expressed as means ± SEM (*n* = 4). Comparisons were made by ANOVA followed by Dunnett's test. ***p* < 0.01, compared with control. ##*p* < 0.01, are expressed as means ± SEM (*n* = 4). Comparisons were made by ANOVA followed by Dunnett's test. ***p* < 0.01, compared with control. ##*p* < 0.01, are expressed as means ± SEM (*n* = 4). Comparisons were made by ANOVA followed by Dunnett's test. ***p* < 0.01, compared with control. ##*p* < 0

VSCC blocker (ω -conotoxin-GVIA) nor P/Q-type VSCC blockers (ω -agatoxin-IVA and ω -conotoxin-MVIIC) affected sPLA₂-IIA-induced neuronal cell death (Fig. 3b). Nimodipine significantly prevented neurons from undergoing sPLA₂-IIA-induced cell death (Fig. 3b). The neuroprotective effect of nimodipine was dependent on its concentration (Fig. 4a).

Effect of L-VSCC blockers on sPLA₂-IIA-induced Ca²⁺ influx

The potentiation of Ca²⁺ uptake by sPLA₂-IIA was significantly reduced by L-VSCC blockers (Fig. 4b). On the other hand, neither an N-type VSCC blocker (ω -conotoxin-GVIA) nor P/Q-type VSCC blockers (ω -agatoxin-IVA and ω -conotoxin-MVIIC) affected sPLA₂-increased Ca²⁺ influx (Fig. 4b). These results indicated that sPLA₂ induced the influx of Ca²⁺ into neurons through L-VSCC.

Fig. 4 Effects of VSCC blockers and a radical scavenger on sPLA2-IIA-induced neuronal cell death and influx of Ca²⁺. (a) Cortical neurons were treated with nimodipine at the indicated concentrations in the presence of 1 µM sPLA2-IIA. MTT reducing activity was determined 48 h later. Control value of MTT-reducing activity was 0.37 \pm 0.01. Data are expressed as means \pm SEM (n = 4). **p < 0.01, compared with control (no addition of sPLA₂-IIA) by Student's *t*-test. #p < 0.01, compared with vehicle by ANOVA followed by Dunnett's test. (b) Ca²⁺ influx: cortical neurons were treated with 1 µM sPLA2-IIA in the absence or presence of 10 μм nimodipine (Nim), ω-conotoxin MVIIC (MVIIC), ω-conotoxin GVIA (GVIA), ω-agatoxin GVIA (Aga), or 130 μм vitamin E (VE). Influx of Ca2+ was measured 18 h later. Control value of Ca²⁺ influx was 5176 \pm 624 cpm. Data are expressed as means \pm SEM (n = 4). **p < 0.01, compared with control (no addition of sPLA₂-IIA) by Student's t-test. #p < 0.05, ##p < 0.01, compared with vehicle by ANOVA followed by Dunnett's test.

Effects of L-VSCC blockers on sPLA₂-IIA-induced apoptotic features

We evaluated the condensation of chromatin, a characteristic feature of apoptosis, in neurons (Figs 5a–c and 6a). sPLA₂-IIA-treated neurons were stained with Hoechst 33258 fluorescent dye. In untreated cultures, cells showed little fluorescence in the nucleus (Fig. 5a). On the other hand, condensed and fragmented chromatin was clearly observed in cultures treated with sPLA₂-IIA for 48 h (Fig. 5b). The amount of condensed chromatin in sPLA₂-IIA-treated neurons was decreased significantly by nimodipine (Figs 5c and 6a).

We also studied another apoptotic feature, fragmentation of DNA (Figs 5d–f and 6b). With the TUNEL technique, it is possible morphologically to discriminate between the apoptotic nuclei by observing the presence of strand breaks in the DNA when the nicked ends of DNA are labeled. After

Fig. 5 Effect of an L-VSCC blocker on sPLA₂-IIA-induced apoptotic features. Cortical neurons were treated with vehicle (a and d), 1 μ M sPLA₂-IIA (b and e), or 1 μ M sPLA₂-IIA + 10 μ M nimodipine (c and f). Neurons were stained with 10 μ M Hoechst 33258 for 10 min 48 h later (a, b and c). Neurons were fixed with 4% paraformaldehyde, washed twice with phosphate-buffered saline, and stained by the TUNEL technique 48 h later (d, e and f). Bar = 100 μ m.

Fig. 6 Effect of an L-VSCC blocker on sPLA₂-IIA-induced apoptosis. Cortical neurons were treated with 1 μ M sPLA₂-IIA in the absence or presence of 10 μ M indoxam or 10 μ M nimodipine. (a) Hoechst 33258-positive and (b) TUNEL-positive neurons were detected 48 h later. Data are expressed as means ± SEM (n = 4). Comparisons were made by ANOVA followed by Dunnett's test. **p < 0.01, compared with control. ##p < 0.01, compared with sPLA₂-IIA alone.

neurons were incubated with or without sPLA₂-IIA for 48 h, the number of TUNEL-positive nuclei was increased in sPLA₂-IIA-treated neurons (Fig. 5e) as compared to untreated controls (Fig. 5d). The number of TUNEL-positive nuclei in sPLA₂-IIA-treated neurons (Fig. 5f) was decreased significantly by nimodipine (Fig. 6b).

Effects of radical scavengers on sPLA₂-IIA-induced ROS Free radicals can activate L-VSCC (Ueda *et al.* 1997a). To ascertain whether radical scavengers affect the neurotoxicity of sPLA₂-IIA, we evaluated their effect on sPLA₂-IIAinduced neuronal cell death. ROS were generated 15 h after sPLA₂-IIA treatment (Fig. 7a). ROS were reduced significantly by radical scavengers, including vitamin E (VE), probucol (PRB), butylated hydroxytoluene (BHT), and chlorpromazine (CPZ; Fig. 7a). On the other hand, nimodipine (NIM) did not affect the production of ROS after

Fig. 7 Effects of radical scavengers and an L-VSCC blocker on the neurotoxicity of sPLA₂-IIA. (a) Free radicals: cortical neurons were treated with vehicle, 130 µm vitamin E (VE), 10 µm probucol (PRB), 10 μм butylated hydroxytoluene (BHT), 10 μм chlorpromazine (CPZ), or 10 µm nimodipine (NIM) in the presence of 1 µm sPLA2-IIA. Production of ROS was measured 15 h later. Control value of ROS was 0.32 ± 0.01 . Data are expressed as means \pm SEM (n = 4). **p < 0.01, compared with control (no addition of sPLA₂-IIA) by Student's t-test. #p < 0.05, ##p < 0.01, compared with vehicle by ANOVA followed by Dunnett's test. (b) Cortical neurons were treated with vehicle, 130 µM VE, 10 µm PRB, 10 µm BHT, or 10 µm CPZ in the presence of 1 µm sPLA₂-IIA. MTT-reducing activity was determined 48 h later. Control value of MTT-reducing activity was 0.38 ± 0.03. Data are expressed as means \pm SEM (n = 4). **p < 0.01, compared with control (no addition of sPLA₂-IIA) by Student's t-test. ##p < 0.01, compared with vehicle by ANOVA followed by Dunnett's test.

Fig. 8 Effect of an sPLA₂-IIA inhibitor, Ca²⁺ channel blockers and a radical scavenger on sPLA₂-IIA-induced morphologic changes in cortical neurons. Cortical neurons were treated with vehicle (a), 1 μM sPLA₂-IIA (b), 1 μM sPLA₂-IIA + 10 μM indoxam (c), 1 μM sPLA₂-IIA + 10 μM nimodipine (d), 1 μM sPLA₂-IIA + 30 μM MK-801 (e), or 1 μM sPLA₂-IIA + 130 μM vitamin E (f). Neurons were examined by phase-contrast microscopy 48 h later. Bar = 100 μm.

sPLA₂-IIA treatment. Vitamin E also suppressed Ca²⁺ influx as well as the L-VSCC blocker (Fig. 4b). In addition, radical scavengers including vitamin E, probucol, butylated hydroxytoluene, and chlorpromazine significantly prevented neurons from undergoing sPLA₂-IIA-induced neuronal cell death (Fig. 7b).

Effects of L-VSCC blockers on sPLA₂-IIA-induced light-microscopic changes in neurons

We examined light microscopic changes in neurons at 48 h after sPLA₂-IIA treatment (Fig. 8). In control cultures, neurons had extended neurites and smooth, round cell bodies (Fig. 8a). On the other hand, most cell bodies shrank and lost their neurites in cultures treated with sPLA₂-IIA (Fig. 8b). Indoxam (Fig. 8c), nimodipine (Fig. 8d), and vitamin E (Fig. 8f) significantly ameliorated the morphologic disruption in neurons treated with sPLA₂-IIA, whereas MK-801 (Fig. 8e) had no effect on them.

Discussion

In the present study, we found that the influx of Ca^{2+} into neurons was involved in sPLA₂-IIA-induced neuronal cell death. Furthermore, sPLA₂-IIA potentiated Ca^{2+} influx through L-VSCC. To our knowledge, this is the first report that sPLA₂-IIA exhibits a biological response via the influx of Ca^{2+} through L-VSCC.

How does sPLA2-IIA trigger the elevation of the intracellular concentration of calcium ($[Ca^{2+}]i$) prior to neuronal cell death? In the human astrocytoma cell line 1321 N1, sPLA₂-IIA elicits a rapid and transient peak of [Ca²⁺]i (Hernández et al. 1999). Hernández et al. (1999) proposed the hypothesis that sPLA2-IIA interacts with a plasma membrane binding structure(s), activates herbimycin-sensitive tyrosine kinase and pertussis toxin-sensitive GTP binding protein, stimulates PLC γ , produces inositol triphosphate, and mobilizes [Ca²⁺]i. The possibility was not supported in our system for the following reasons. First, herbimycin had no effect on sPLA2-IIA-induced neuronal cell death and apoptotic features (data not shown). Second, no tyrosine phosphorylation specific for herbimycin was detected (data not shown). Third, a $[Ca^{2+}]i$ peak is elicited several minutes after the addition of sPLA2-IIA, whereas the time course of neuronal cell death is of the order of days (Yagami et al. 2002a). Collectively, these results suggest that the influx of Ca²⁺ from extracellular fluid, but not the efflux of Ca²⁺ from intracellular store, might contribute to sPLA₂-IIA-induced neuronal cell death.

The NMDA receptor antagonist MK-801 partially blocks the neurotoxicity of sPLA₂-IA from Taipan snake venom (Kolko et al. 1996). NMDA receptors possess an intrinsic Ca²⁺-conducting pore that is activated by the combination of ligand binding and membrane depolarization. Nonmammalian sPLA2s causes cell death in primary cultures of rat cortical neurons (Clap et al. 1995; Kolko et al. 1996). In the present study, NMDA receptor blockers did not prevent neurons from cell death induced by the mammalian sPLA₂-IIA. Other ionotropic glutamate receptors are AMPA/kinate receptors. AMPA/kinate receptors are highly permeable to Na⁺ and play a major role in fast synaptic transmission. Membrane depolarization resulting from glutamate binding to AMPA/kinate receptors activates voltagedependent calcium channels. However, the AMPA/kinate receptor blocker did not affect the neurotoxicity of sPLA2-IIA. Neither NMDA receptors nor AMPA/kinate receptors appeared to play a role in sPLA2-IIA-induced neuronal cell death.

In the present study, L-VSCC blockers significantly suppressed sPLA₂-IIA-induced Ca²⁺ influx. Furthermore, the blocker rescued neurons from sPLA₂-IIA-induced cell death, and it ameliorated the apoptotic features. This L-VSCC-dependent mechanism is supported by others (Ueda *et al.* 1997a; Ekinci *et al.* 1999). Aggregated deposits of Aβ, a neurotoxin, are generally assumed to have a causative role in neurodegeneration and development of AD. Aβ is a 39- to 43-amino-acid hydrophobic peptide that causes neuronal cell death in primary cultures of rat cortical neurons, accompanying several characteristic features of apoptosis, such as formation of cell surface blebs, chromatin condensation, and DNA fragmentation (Pike *et al.* 1991; Forloni *et al.* 1993; Ueda *et al.* 1994, 1996). Aβ causes elevation of [Ca²⁺]i and collapse of Ca²⁺ homeostasis (Mattson *et al.* 1992; Ueda *et al.* 1997b). Moreover, $A\beta$ potentiates Ca²⁺ influx through L-VSCC (Weiss *et al.* 1994; Ueda *et al.* 1997a). These findings suggest that there are common L-VSCC-dependent mechanisms by which sPLA₂-IIA and A β lead to neuronal cell death on rat cortical neurons.

A transient increase of $[Ca^{2+}]i$ resulting from electrochemical stimulation and opening of voltage-sensitive Ca^{2+} channels mediates information-coding processes in neuronal circuits (Malenka 1991) and regulates growth cone behaviors in developing neurons (Kater *et al.* 1988). However, uncontrolled prolonged elevation of $[Ca^{2+}]i$ can result in neuronal degeneration and death (Mattson *et al.* 1992; Ueda *et al.* 1997b). Calcium appears to damage cellular proteins and membranes by activating several enzymes such as proteases (Siman and Noszeck 1988), endonuclease (Arends *et al.* 1990), and protein kinases (Ueda *et al.* 1996).

How does sPLA₂-IIA activate L-VSCC? ROS is produced during arachidonic acid oxidative metabolism. Indeed, ROS was generated before sPLA₂-IIA-induced neuronal cell death. Radical scavengers not only suppressed the elevated level of ROS, but also prevented neurons from sPLA₂-IIAinduced Ca²⁺ influx and cell death. Furthermore, L-VSCC can be opened by ROS (Ueda *et al.* 1997a). Thus, sPLA₂-IIA appears to stimulate L-VSCC via ROS.

Following the production of ROS, intracellular oxidants have the potential to trigger apoptosis in several ways. First, ROS damage membranes of cells by the peroxidation of lipids. The unsaturated bonds of fatty acids and cholesterol are particularly vulnerable to free-radical attack, yielding lipid peroxides that are also ROS. There are many functional proteins such as receptors, channels, and transporters. The functional impairment of these membrane proteins can destroy the intracellular homeostasis and trigger apoptosis. Second, oxidation of intracellular proteins may modify either their function or their ability to be recognized by other proteins. Oxidative damage can increase the susceptibility of some proteins to degradation by non-lysosomal proteinase complex (Davies and Goldberg 1987). Third, ROS can change nuclear gene transcription, which activates the apoptotic pathway. Several transcription factors such as Fos and Jun have critical cysteine residues involved in DNA binding, their thiol oxidation causing a large decrease in their efficiency of DNA-binding (Abate et al. 1990). In contrast, DNA-binding activity of the nuclear factor kappa B (NF- κ B) is indirectly activated by oxidative events (via enhanced proteolysis of its inhibitory factor I-kB), thereby initiating transcription of NF-kB-responsive genes (Staal et al. 1990). Finally, direct oxidative damage to DNA can initiate an apoptotic response. In lymphocytes, radiation produces ROS and causes oxidation of DNA, leading to apoptosis (Yamada and Ohyama 1988).

sPLA₂-IIA exhibited neurotoxicity at concentrations of about 1 μ M *in vitro*. Does the concentration of endogenous sPLA₂-IIA reach such a high level *in vivo*? Concentrations

of sPLA2-IIA in vivo were calculated under the assumption that sPLA₂-IIA contributed to most of the sPLA₂ activity. Its concentration was about 3.5 nm in the area of neurodegeneration induced by middle cerebral artery occlusion, if spread uniformly in that area. This gave rise to the question why the concentration of sPLA2-IIA required in vitro was approximately 300 times as high as that expressed in vivo. This discrepancy could be explained in several reports. First, sPLA2-IIA generated from cytokine-stimulated astrocytes might reach such a high concentration microenvironmentally at surfaces of neurons via attachment to heparan sulfate proteoglycan (Koduri et al. 1998). Second, sPLA₂-IIA might cause neuronal cell death at lower concentrations in the presence of co-factors (Fourcade et al. 1995; Murakami et al. 1999). This was not found in the present study. Third, the sensitivity of the cells to endogenously produced sPLA2-IIA is higher than to exogenously added sPLA2-IIA (Murakami et al. 1999). The striking difference between the amounts of sPLA₂-IIA required by different systems, e.g. exogenously added (µM) versus endogenously produced (nM), implies that the continued supply of sPLA₂-IIA, which occurs in the latter situation, may be an important factor for its adequate action during cellular (particularly prolonged) responses. Although IC₅₀ of indoxam is 1.5 nm (Yokota et al. 1999), 10 µM indoxam was used in the present study. Yokota et al. (1999) have reported that indoxam exhibited inhibitory effect against 0.4 ng/250 µL (0.11 nM) sPLA2-IIA with IC₅₀ of 1.5 nm. In their condition, the ratio of sPLA₂-IIA : indoxam was 1 : 13. On the other hand, the ratio of sPLA₂-IIA : indoxam was 1 : 10 in the present study. Thus, the concentrations of indoxam and sPLA₂-IIA in the present study was different from those in the report of Yokota et al. (1999), whereas the ratio of indoxam to sPLA₂-IIA in the former was very similar to those in the latter.

The application of sPLA₂-IIA for 48 h decreased MTTreducing activity by about 12 500 cells/cm², whereas it increased the Hoechst staining cells by about 8000 cells/cm² and the TUNEL-positive cells by about 250 cells/cm². The first of these assays was performed for evaluation of neuronal survival, and the latter two methods were used for quantifying apoptosis. The values obtained by these methods were not the same. Did sPLA2-IIA induce neuronal cell death via necrosis? Previously, we have reported that sPLA2-IIA induced neuronal cell death via apoptosis by the ultrastructural analysis as well as the biochemical analysis (Yagami et al. 2002a). In the analysis by transmission electron microscopy, the process of neuronal cell death induced by sPLA₂-IIA showed ultrastructural changes such as progressive cell shrinkage, blebbing of the plasma membrane, loss of cytosolic organelles, clumping of chromatin, and fragmentation of DNA. However, necrotic features such as mitochondrial abnormalities and nuclear swelling were not detected

during neuronal cell death. The MTT-reduction assay, Hoechst 33258-staining, and TUNEL reflect mitochondrial succinate dehydrogenase activity, clumping of chromatin, and fragmentation of DNA, respectively. On the analysis by transmission electron microscopy and light microscopy, sPLA₂-IIA triggered impairment of mitochondrial function, chromatin condensation, and DNA fragmentation sequentially, but not entirely in parallel. Thus, the different values obtained by the three methods appeared to be attributable to the different sensitivity of sPLA₂-IIA-treated neurons to these methods.

Apoptotic cell membranes are potent targets for the enzyme (Atsumi et al. 1997). Neuronally differentiated PC12 cells deprived of nerve growth factor and serum, mast cells deprived of hematopoietic cytokines, and anti-Fas antibodytreated U937 monocytic leukemia cells, all of which display the classical changes of apoptosis, become sensitive to sPLA₂-II-mediated liberation of arachidonic acid. Under our culture conditions, sPLA2-IIA liberated arachidonic acid significantly from neurons prior to apoptosis, but not from myocytes, which are resistant to the enzyme (Yagami et al. 2002a). A specific sPLA₂ inhibitor, indoxam, significantly suppressed the sPLA2-IIA-induced liberation of arachidonic acid from neurons (Yagami et al. 2002a). Indoxam and p-BPB prevented neurons from sPLA2-IIA-induced apoptosis (Yagami et al. 2002a), suggesting that the neurotoxicity of sPLA₂-IIA depends on the susceptibility of cells to sPLA₂-IIA-mediated liberation of arachidonic acid. Arachidonic acid metabolites, especially PGD₂, might be involved in the neurotoxicity of sPLA2-IIA (Yagami et al. 2002a). How are the influx of Ca²⁺ and the generation of ROS associated with the neurotoxic PGD₂? We propose a mechanism showing how these mediators are involved in sPLA2-IIA-induced apoptosis. First, sPLA₂-IIA acts on phospholipids to release free fatty acids, including arachidonic acid. Arachidonic acid oxidative metabolism produces eicosanoids, e.g. PGD₂, and ROS. Second, ROS activate L-VSCC in the plasma membranes of neurons, and potentate Ca²⁺ influx into neurons. Third, the increase in intracellular calcium stimulates cytosolic PLA₂, producing a second cycle of arachidonic acid release. Finally, calcium, ROS, and PGD₂ cooperatively damage cellular membranes and proteins, leading to apoptosis.

In conclusion, we demonstrated that sPLA₂-IIA potentiates the influx of Ca^{2+} into neurons through L-VSCC. We suggested that ROS generated during arachidonic acid oxidative metabolism stimulate L-VSCC. Furthermore, the present study sheds light on the cooperative involvement of eicosanoids, ROS, and Ca^{2+} in sPLA₂-IIA-induced neuronal apoptosis.

Acknowledgements

We thank to Dr Hitoshi Arita for his guidance. We also thank to Dr Masafumi Fujimoto for valuable discussions.

References

- Abate C., Patel L., Rauscher F. J. and 3rd. & Curran T. (1990) Redox regulation of fos and jun DNA-binding activity *in vitro*. *Science* 249, 1157–1161.
- Arends M. J., Morris R. G. and Wyllie A. H. (1990) Apoptosis: the role of endonucleases. Am. J. Pathol. 136, 593–608.
- Arita H., Nakano T. and Hanasaki K. (1989) Thromboxane A₂: its generation and role in platelet activation. *Prog. Lipid Res.* 28, 273– 301.
- Asakura K., Kanemasa T., Minagawa K., Kagawa K. and Ninomiya M. (1999) The non-peptide α -eudesmol from *Juniperus virginiana* Linn. (Cupressaceae) inhibits ω -agatoxin IVA-sensitive Ca²⁺ currents and synaptosomal ⁴⁵Ca²⁺ uptake. *Brain Res.* **823**, 169–176.
- Atsumi G., Murakami M., Tajima M., Shimbara S., Hara N. and Kudo I. (1997) The perturbed membrane of cells undergoing apoptosis is susceptible to type II secretory phospholipase A₂ to liberate arachidonic acid. *Biochim. Biophys. Acta* **1349**, 43–54.
- Choi D. W. (1995) Calcium: still center stage in hypoxic-ischemia neuronal death. *Trends Neurosci.* 18, 58–60.
- Clapp L. E., Klette K. L., DeCoster M. A., Bernton E., Petras J. M., Dave J. R., Laskosky M. S., Smallridge R. C. and Tortella F. C. (1995) Phospholipase A₂ –induced neurotoxicity *in vitro* and *in vivo* in rats. *Brain Res.* 693, 101–111.
- Davies K. J. A. and Goldberg A. L. (1987) Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J. Biol. Chem. 262, 8220–8226.
- Ekinci F. J., Malik K. U. and Shea T. B. (1999) Activation of the L-voltage-sensitve calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cell to β-amyloid. *J. Biol. Chem.* 274, 30322–30327.
- Forloni G., Chisa R., Smiroldo S., Verga L., Salmona M., Taglivini F. and Angeretti N. (1993) Apoptosis mediated neurotoxicity induced by chronic application of β amyloid fragment 25–35. *Neuro. Report* **4**, 523–526.
- Fourcade O., Simon M.-F., Viodé C., Rugani N., Leballe F., Ragab A., Fournié B., Sarda L. and Chap H. (1995) Secretory phospholipase A₂ generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. *Cell* 80, 919– 927.
- Furue S., Kuwabara K., Mikawa K., Nishina K., Shiga M., Maekawa N., Ueno M., Chikazawa Y., Ono T., Hori Y., Matsukawa A., Yoshinaga M. and Obara H. (1999) Crucial role of group IIA phospholipase A₂ in oleic acid-induced acute lung injury in rabbits. *Am. J. Respir. Crit. Care Med.* **160**, 1292–1302.
- Hagishita S., Yamada M., Shirahase K., Okada T., Murakami Y., Ito Y., Matsuura T., Wada M., Kato T., Ueno M., Chikazawa Y., Yamada K., Ono T., Teshirogi I. and Ohtani M. (1996) Potent inhibitors of secretory phospholipase A₂: Synthesis and inhibitory activities of indolizine and indene derivatives. J. Med. Chem. **39**, 3636–3658.
- Hernández M., Barrero M. J., Alvarez J., Montero M., Crespo M. S. and Nieto M. L. (1999) Secretory phospholipase A₂ activation and Ca²⁺ mobilization in the human astrocytoma cell line 1312N1 by a mechanism independent of its catalytic activity. *Biochem. Biophys. Res. Commun.* 246, 70–75.
- Jesberger J. A. and Richardson J. S. (1991) Oxygen-free radicals and brain dysfunction. Int. J. Neurosci. 57, 1–17.
- Kater S. B., Mattson M. P., Cohan C. S. and Connor J. A. (1988) Calcium regulation of the neuronal growth cone. *Trends. Nerurosci.* 11, 315–321.
- Koduri R. S., Baker S. F., Snitkto Y., Han S. K., Cho W., Wilton D. C. and Gelb M. H. (1998) Action of human group IIA secreted phospholipase A₂ on cell membranes. *J. Biol. Chem.* 273, 32142– 32153.

- Koike K., Yamamoto Y., Hori Y. and Ono T. (2000) Group IIA phospholipase A₂ mediates lung injury in intestinal ischemia-reperfusion. *Ann. Surg.* 232, 90–97.
- Kolko M., DeCoster M. A., Rodriguez de Turco E. B. and Bazan N. G. (1996) Synergy by secretory phospholipase A₂ and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J. Biol. Chem. 271, 32722–32726.
- Kramer R. M., Hession C., Johansen B., Hayes G., McGray P., Chow E. P., Tizard R. and Pepinsky R. B. (1989) Structure and properties of a human non-pancreatic phosopholipase A₂. J. Biol. Chem. 264, 5768–5775.
- Lambeau G. and Lazdunski M. (1999) Receptors for a growing family of secreted phospholipases A₂. Trends Pharmacol. Sci. 20, 162–170.
- Lauritzen I., Heurteaux C. and Lazdunski M. (1994) Expression of group II phospholipase A₂ in rat brain after severe forebrain ischemia and in endotoxic shock. *Brain Res.* **651**, 353–356.
- Lipton S. A. and Rosenberg P. A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622.
- Malenka R. C. (1991) The role of post-synaptic calcium in the induction of long-term potentiation. *Mol. Neurobiol.* 5, 289–295.
- Mattson M. P., Cheng B., Dsavis D., Bryant K., Lieberburg I. and Rydle R. E. (1992) β-amyloid peptide destabilized calcium homeostatis and render human cortical neurons vulnerable to excitotoxicity. *J. Neurosci.* 12, 376–389.
- Mattson M. P., Barger S. W., Cheng B., Lieberburg I., Smith-Swintosky V. L. and Rydel R. E. (1993) Amyloid precursor protein metabolites and loss of neuronal calcium homeostatis in Alzheimer's disease. *Trends Neurosci.* 16, 409–415.
- Murakami M., Kambe T., Shimbara S., Higashino K., Hanasaki K., Arita H., Horiguchi M., Arita M., Arai H., Inoue K. and Kudo I. (1999) Different functional aspects of the group II subfamily (type IIA and V) and type X secretory phospholipase in regulating arachidonic acid release and prostaglandin generation. *J. Biol. Chem.* 274, 31435–31444.
- Nicotera P. and Lipton S. A. (1999) Excitotoxins in neuronal apoptosis and necrosis. J. Cereb. Blood Flow Metab. 19, 583–591.
- Pike C. J., Walencewicz A. J., Glabe C. G. and Cotman C. W. (1991) In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. *Brain Res.* 621, 279–282.
- Shimizu T., Kawabata T. and Nakamura M. (1990) Protective effect of a novel calcium blocker, S-312d, on ischemic acute renal failure in rat. J. Pharm. Exp. Ther. 255, 484–490.
- Siman R. and Noszeck J. C. (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown *in vivo*. *Neuron* 1, 279–287.
- Smith M. L., Auer R. N. and Siesj B. K. (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. *Acta Neuropathol.* 64, 319–332.
- Staal F. J., Roederer M., Herzenberg L. A. and Herzenberg L. (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. *Proc. Natl Acad. Sci. USA* 87, 9943–9947.
- Tishchfield J. A. (1997) A reassessment of the low molecular weight phospholipase A₂ gene family in mammals. J. Biol. Chem. 272, 17247–17250.
- Tojo H., Ying Z. and Okamoto M. (1993) Purification and characterization of guinea pig gastric phospholipase A₂ of the pancreatic type. *Eur. J. Biochem.* 215, 81–90.
- Tsien R. W., Ellinor P. T. and Horne W. A. (1991) Molecular diversity of voltage-dependent Ca²⁺ channels. *Trends Pharmacol. Sci.* 12, 349– 354.

- Ueda K., Fukui Y. and Kageyama H. (1994) Amyloid β protein-induced neuronal cell death: neurotoxic properties of aggregated amyloid β protein. *Brain Res.* 639, 240–244.
- Ueda K., Yagami T., Kageyama H. and Kawasaki K. (1996) Protein kinase inhibitor attenuates apoptotic cell death induced by amyloid β protein in culture of the rat cerebral cortex. *Neurosci. Lett.* 203, 175–178.
- Ueda K., Shinohara S., Yagami T., Asakura K. and Kawasaki K. (1997a) Amyloid β protein potentiates Ca²⁺ influx through 1-type voltagesensitive Ca²⁺ channels: a possible involvement of free radicals. *J. Neurochem.* **68**, 265–271.
- Ueda K., Yagami T., Asakura K. and Kawasaki K. (1997b) Chlorpromazine reduces toxicity and Ca^{2+} uptake induced by amyloid β protein (25–35) *in vitro. Brain Res.* **748**, 184–188.
- Umemura K., Kawai H., Ishihara H. and Nakashima M. (1995) Inhibitory effect of clopidogrel, vapiprost and argatroban on the middle cerebral artery thrombosis in the rat. *Jpn J. Pharmacol.* 67, 253– 258.
- Vadas P. and Pruzanski W. (1986) Role of secretory phospholipase A₂ in the pathology of disease. *Lab. Invest.* **55**, 391–404.
- Weiss J. H., Pike C. J. and Cotman C. W. (1994) Ca^{2+} channel blockers attenuate β -amyloid peptide toxicity to cortical neurons in culture. *J. Neurochem.* **62**, 372–375.
- Yagami T., Ueda K., Asakura K. and Hori Y. (2001a) Deterioration of axotomy-induced neurodegeneration by group IIA secretory phospholipase A₂. *Brain Res.* **917**, 230–234.
- Yagami T., Ueda K., Asakura K., Sakaeda T., Kuroda T., Hata S., Kambayashi Y. and Fujimoto M. (2001b) Effects of S-2474, a novel nonsteroidal anti-inflammatory drug, on amyloid β protein-induced neuronal cell death. *Br. J. Pharmacol.* **134**, 673– 681.
- Yagami T., Ueda K., Asakura K., Hata S., Kuroda T., Sakaeda T., Takasu N., Tanaka K., Gemba T. and Hori Y. (2002a) Human group IIA secretory phospholipase A₂ induces neuronal cell death via apoptosis. *Mol. Pharmcol.* 61, 1–13.
- Yagami T., Ueda K., Asakura K., Hayasaki-Kajiwara Y., Nakazato H., Sakaeda T., Hata S., Kuroda T., Takasu N. and Hori Y. (2002b) Group IB Secretory phospholipase A₂ induces neuronal cell death via apoptosis. J. Neurochem. 81, 449–461.
- Yagami T., Ueda K., Asakura K., Kuroda T., Hata S., Sakaeda T., Kambayashi Y. and Fujimoto M. (2002c) Effects of endothelin B receptor agonists on amyloid β protein-induced neuronal cell death. *Brain Res.* 948, 72–81.
- Yagami T., Ueda K., Asakura K., Hata S., Kuroda T., Kishino J., Sakaeda T., Sakaguchi G., Itoh H. and Hori Y. (2002d) Group IB secretory phospholipase A₂ induces cell death in cultured cortical neurons: a possible involvement of its binding sites. *Brain Res.* 949, 197–201.
- Yagami T., Nakazato H., Ueda K., Asakura K., Kuroda T., Hata S., Sakaeda T., Sakaguchi G., Itoh N., Hashimoto Y., Tsuzuki H. and Kambayashi Y. (2003a) Effect of PGE₂ on amyloid β proteininduced neuronal cell death. *Brain Res.* 959, 328–335.
- Yagami T., Ueda K., Asakura K., Sakaeda T., Sakaguchi G., Itoh N., Hata S., Kuroda T., Kambayashi Y. and Tsuzuki H. (2003b) Effect of Gas6 on amyloid β protein-induced neuronal cell death. *Neuropharmacology* **43**, 1289–1296.
- Yamada T. and Ohyama H. (1988) Radiation-induced interphase death of rat thymocytes is internally programmed (apoptosis). *Int. J. Radiat. Biol.* 53, 65–75.
- Yokota Y., Hanasaki K., Ono T., Nakazato H., Kobayashi T. and Arita H. (1999) Suppression of murine endotoxic shock by sPLA₂ inhibitor, indoxam, through group IB sPLA₂-independent mechanism. *Biochim. Biophys. Acta* 18, 213–222.