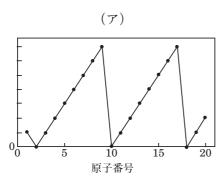
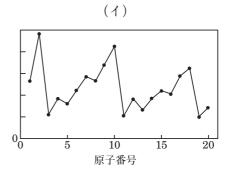
化 学


必要ならば、原子量、数値は次の値を使うこと。


(60分 100点)

H 1.0 C 12 O 16 S 32
ファラデー定数=9.65×10 ⁴ C/mol
標準状態で気体 1 mol が占める体積=22.4 L
次の[問1]~[問3]に答えなさい。(41点)
[問1] 次の(1)~(6)の問いの答として最も適当なものを、それぞれの解答群の中
から1つ選び, マークしなさい。
(1) 次の物質の組合せのうち、同素体の 関係にないもの はどれか。 1
① 塩酸と塩化水素 ② オゾンと酸素 ③ ダイヤモンドとフラーレン
④ 黄リンと赤リン ⑤ 斜方硫黄とゴム状硫黄
(2) 次のイオン結晶のうち、結晶を構成する陽イオンと陰イオンの電子配置が同
じものはどれか。 2
① 酸化カルシウム ② 塩化カリウム ③ 硫化ナトリウム
④ フッ化リチウム ⑤ 塩化アルミニウム
(3) 「標準状態の窒素 1.0 L と酸素 1.0 L に含まれる分子の数は等しい。」という内
容に最も関係が深い法則はどれか。 3
① 定比例の法則 ② 倍数比例の法則 ③ 気体反応の法則
④ ファラデーの法則 ⑤ アボガドロの法則

- (4) 次のイオン反応式中の()は係数を表している。*X*はどれか。 **4**
 - $()MnO_4^- + ())H^+ + (X)e^- \longrightarrow ()Mn^{2+} + ()H_2O$
 - ① 1(係数なし) ② 2 ③ 3 ④ 4

- 5 5 6 6 7 7 8 8
- (5) 次のグラフ(ア), (イ)は、横軸に原子番号、縦軸に元素の性質を表したもの である。(ア),(イ)のグラフが表す元素の性質の組合せはどれか。 5

	(ア)	(1)
1	イオン化エネルギー	原子半径
2	イオン化エネルギー	価電子の数
3	価電子の数	原子半径
4	価電子の数	イオン化エネルギー
(5)	原子半径	価電子の数
6	原子半径	イオン化エネルギー

- (6) 2.0×10⁻² mol/L の水酸化ナトリウム水溶液 500 mL に,標準状態の塩化水素 112 mL を吹き込み、完全に反応させた。反応後の水溶液のpHはいくらか。ただ し, 反応後も水溶液の体積は変わらず, また, $[H^+][OH^-]=1.0\times10^{-14}$ (mol/L)² とする。

- ① 1 ② 2 ③ 3 4 4
- (5) 10

- (6) 11 (7) 12 (8) 13

[問2] 化学変化にともない出入りする熱を反応熱という。反応熱は通常 \mathbf{P} , 1.0×10^5 Pa において, 注目すべき物質 \mathbf{I} あたりの値で 表される。例えば、メタンの燃焼を熱化学方程式で表すと、次のようになる。 $CH_4(\mathfrak{H}) + 2O_2(\mathfrak{H}) = CO_2(\mathfrak{H}) + 2H_2O(\tilde{\mathfrak{H}}) + 890 \text{ kJ}$ 反応熱は化学変化によっていくつかの種類があり、物質 が完全 燃焼するときに発生する熱は燃焼熱,物質 イ がその成分の からつくられるときに出入りする熱は生成熱、酸と塩基の水溶液 が中和して
エ が イ できるときに発生する熱は中和熱という。 また、物質の状態変化が起こるときも熱の出入りがあり、融解は オ 凝縮は ,蒸発は をともなう。状態が特定しにくい H_2O などは、熱化学方程式中で H_2O (固)や H_2O (液)のように状態を付記す ることがある。

これについて、次の(1)~(6) の問いに答えなさい。答は、それぞれの解答群の中から最も適当なものを1つ選び、マークしなさい。

 (1) 文中の
 ア
 ・
 イ
 に当てはまる語句の組合せはどれか。

ア 1 (1) 0°C 1 g (2) 0° C 100 g(3) 0°C 1 mol (4) $25 \,^{\circ}\mathrm{C}$ 1 g (5) 25 ℃ $100\,\mathrm{g}$ (6) 25 °C 1 mol

(2)	文中 8	の ウ · [エに当てはま	る語句の組合せはどれか。
		ウ	I	
	1	原子	塩	
	2	原子	水	
	3	単体	塩	
	4	単体	水	
	(5)	イオン	塩	
	6	イオン	水	

に当てはまる語句の組合せはどれか。 (3) 文中の オ 丰 9

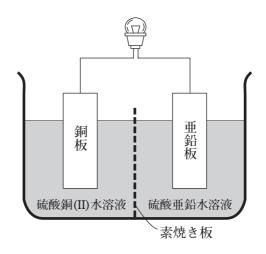
	オ	カ	+
1	発熱	発熱	発熱
2	発熱	発熱	吸熱
3	発熱	吸熱	発熱
4	発熱	吸熱	吸熱
(5)	吸熱	吸熱	吸熱
6	吸熱	吸熱	発熱
7	吸熱	発熱	吸熱
8	吸熱	発熱	発熱

(4) 32 mg のメタンを完全燃焼させて発生した熱量すべてを 0 ℃の水 100 g に吸 収させると、水温は何℃上昇するか。ただし、水1.0gの温度を1℃上昇させ るのに必要な熱量は, 4.2 J とする。 **10** ℃

- ① 2.1 ② 4.2 ③ 6.3
- 4 8.4

- (5) 21
- 6 42
- ⑦ 63

(5) エタノール1 mol が完全燃焼して二酸化炭素と水蒸気が生成するときの熱量


 $C_2H_5OH(液) + 3O_2(気) = 2CO_2(気) + 3H_2O(気) + Q kJ$ 次の熱化学方程式を用いて、反応熱 Q の値を求めよ。 11

$$C(黒鉛) + O_2(気) = CO_2(気) + 394 kJ$$

$$2C(黒鉛) + 3H_2(気) + \frac{1}{2}O_2(気) = C_2H_5OH(液) + 278 kJ$$

$$H_2(気) + \frac{1}{2}O_2(気) = H_2O(液) + 286 kJ$$

$$H_2O(気) = H_2O(液) + 44 kJ$$

- ① 1236 ② 1324 ③ 1368
- (4) 1500
- (5) 1792 (6) 1924
- (6) 熱とエネルギーに関する次の記述のうち、最も適当なものはどれか。

- ① 生成物がもつエネルギーの総和より反応物がもつエネルギーの総和が小さ いと、その差に相当する熱が放出される。
- ② 同じ物質量の氷、水、水蒸気では、水蒸気がもつエネルギーが最も小さい。
- ③ 化学反応によって出入りする熱の総和は、反応の経路により異なる。
- ④ 炭素の燃焼熱と二酸化炭素の生成熱の値は等しい。
- 液体の水の生成熱は44 kI/mol である。

【問3】 次図のように、素焼き板で隔てた容器に 0.10 mol/L の硫酸銅(Ⅱ)水溶液と 硫酸亜鉛水溶液をそれぞれ 100 mL ずつ入れ、銅板と亜鉛板を浸けて電池を 組み立てた。銅と亜鉛のイオン化傾向は ア なので、電池の正極は イ になる。電池を電球に接続すると電子は ウ へ向かって流れ、亜鉛板では エ 反応が起こる。

これについて、次の(1)~(6) の問いに答えなさい。答は、それぞれの解答群の中から最も適当なものを1つ選び、マークしなさい。

(1) 文中の **ア** · **イ** に当てはまる語句の組合せはどれか。 **13**

	ア	1
1	銅>亜鉛	銅板
2	銅>亜鉛	亜鉛板
3	亜鉛>銅	銅板
4	亜鉛>銅	亜鉛板

(2) 文中の ウ ・ エ に当てはまる語句の組合せはどれか。 14

	ウ	I
1	銅板から亜鉛板	酸化
2	銅板から亜鉛板	還元
3	亜鉛板から銅板	酸化
4	亜鉛板から銅板	還元

(3) 電池に関する次の記述のうち、誤っているものはどれか。 15	5
-----------------------------------	---

- ① 繰り返し充電ができる電池を,二次電池という。
- ② 電池の両極間の電位差を、起電力という。
- ③ 図のようなしくみの電池を、ダニエル電池という。
- ④ 電池は、自発的に起こる酸化還元反応からエネルギーを取り出す装置である。
- ⑤ 電解質水溶液を使わない乾燥した電池を、乾電池という。
- (4) 図の電池から $0.20\,\mathrm{A}$ の電流を流し、電球を $1930\,\mathrm{秒間}$ 点灯させた。点灯後の、左側の硫酸銅(II)水溶液中の銅(II)イオンの濃度は、何 mol/L になっているか。ただし、反応の前後で、溶液の体積は変化しないものとする。 **16** mol/L
 - ① 0.020 ② 0.040 ③ 0.050 ④ 0.060 ⑤ 0.100 ⑦ 0.120 ⑧ 0.140
- (5) 図の電池から電流を取り出すとき、素焼き板を通って移動するイオンはどれか。 17

 - $\textcircled{4} \quad Cu^{2+} \ \, \succeq \ \, Zn^{2+} \qquad \ \, \textcircled{5} \quad Cu^{2+} \ \, \succeq \ \, SO_{4}^{\ \, 2-} \qquad \ \, \textcircled{6} \quad Zn^{2+} \ \, \succeq \ \, SO_{4}^{\ \, 2-}$

- (6) 図の電池で銅板と亜鉛板を入れ替え、硫酸銅(II)水溶液に亜鉛板を、硫酸亜 鉛水溶液に銅板を浸けて組み立てた。観察される様子として適当なものはどれ か。 18
 - ① 亜鉛板に銅が析出し、電球が点灯する。
 - ② 亜鉛板に銅が析出し、電球は点灯しない。
 - ③ 亜鉛板から水素が発生し、電球が点灯する。
 - ④ 亜鉛板から水素が発生し、電球は点灯しない。
 - ⑤ 銅板に亜鉛が析出し、電球が点灯する。
 - ⑥ 銅板に亜鉛が析出し、電球は点灯しない。

Π	次の[問1]~[問3]に答えなさい。	(38点)
---	--------------------	-------

〔問1〕	19	に希硫酸を	加えると刺激身	見のある気	(体Xが	発生し,	20	に
希	硫酸を加	えると腐卵身	見のある気体 Y	が発生した	た。 <u>気体</u>	X と気体	▶Yを反応	古さ
せ	た後、生	成物を乾燥す	トると硫黄が得	られた。	気体Xと	: Y は水に	ニ溶け、気	(体
X	の水溶液	はア	, 気体Yの水	溶液は	1	を示した	-0	

これについて、次の(1)~(5)の問いに答えなさい。答は、それぞれの解答 群の中から最も適当なものを1つ選び、マークしなさい。

- (1) 文中の 19 に当てはまる化合物はどれか。 20
 - ② 炭酸水素ナトリウム ③ 炭酸カルシウム ① 炭酸ナトリウム
 - ④ 硫酸ナトリウム⑤ 亜硫酸水素ナトリウム⑥ 硫化鉄(Ⅱ)
- に当てはまる語句の組合せはどれか。 (2) 文中の 1 21

	ア	1
1	酸性	酸性
2	酸性	中性
3	酸性	塩基性
4	中性	酸性
(5)	中性	中性
6	中性	塩基性
7	塩基性	酸性
8	塩基性	中性
9	塩基性	塩基性

① 気体 X , 気体 Y とも酸化力をもつ。
② 気体 X 、気体 Y とも有色である。
③ 気体 X を,銅(II)イオンを含む水溶液に通じると,黒色沈殿が生じる。
④ 気体 X は、硫黄を空気中で燃焼させても得られる。
⑤ 気体 Y は、銅に希硝酸を加えても得られる。
(4) 下線部の反応が起こり 4.80gの硫黄が得られたとき、反応した気体 Yの体積
は標準状態で何Lか。 23 L
① 1.12 ② 2.24 ③ 3.36 ④ 4.48 ⑤ 5.60
(5) 次の水溶液のうち、気体 Y を吹き込むと白い沈殿がみられるものはどれか。
24
① 硫酸鉄(Ⅱ)を溶かした酸性水溶液
② 硫酸銅(Ⅱ)を溶かした酸性水溶液
③ 硫酸マンガン(Ⅱ)を溶かした酸性水溶液

④ 塩化亜鉛を溶かした塩基性水溶液

⑤ 塩化マグネシウムを溶かした塩基性水溶液

(3) 気体 X, Yに関する次の記述のうち、最も適当なものはどれか。 22

25 の関係のように原子のつながり方が異なることから生じる構造異
<u></u> 性体と,原子の立体配置が異なることから生じる立体異性体がある。立体異
性体には 26 の関係のように炭素間の二重結合に基づく幾何異性体や,
これについて,次の(1)~(4)の問いに答えなさい。答は,それぞれの解答
群の中から最も適当なものを1つ選び、マークしなさい。
(1) 文中の 25 ・ 26 に当てはまる語は、それぞれどれか。
① マレイン酸とフタル酸 ② マレイン酸とフマル酸
③ フタル酸とフマル酸 ④ ジメチルエーテルとエタノール
⑤ プロパンとプロペン ⑥ ヘキサンとシクロヘキサン
(2) アルケンが幾何異性体をもつようになるのは、炭素数がいくつ以上か。
27
① 2 ② 3 ③ 4 ④ 5 ⑤ 6
(3) 光学異性体をもつ化合物はどれか。 28
 乳酸 乳酸 シュウ酸
④ ギ酸 ⑤ サリチル酸 ⑥ アセチルサリチル酸
(4) ベンゼンの二置換体にはオルト(o-), メタ(m-), パラ(p-)の3種類の異性
体がある。p-キシレンがもつ水素原子一つを塩素原子で置換した化合物には、
何種類の構造が考えられるか。 29 種類
① 1 ② 2 ③ 3 4 4 ⑤ 5 6

[問2] 分子式が同じで構造が異なる化合物を, 互いに異性体という。異性体には

[問3] アニリンは ア を イ すると得られる,水に溶けにくい油状の化合物で, ウ 水溶液を加えると エ に呈色する。アニリンを塩酸に溶かし,冷やしながら亜硝酸ナトリウムを反応させると オ が起こり,芳香族化合物 X ができる。さらに,芳香族化合物 X にナトリウムフェノキシドの水溶液を加えると カ が起こり,橙色の芳香族化合物 Y ができる。

これについて、次の(1)~(5) の問いに答えなさい。答は、それぞれの解答群の中から最も適当なものを1つ選び、マークしなさい。

(1) 文中の **ア** · **イ** に当てはまる化合物名と語句の組合せはどれか。 **30**

	ア	1	
1	安息香酸	酸化	
2	安息香酸	還元	
3	サリチル酸	酸化	
4	サリチル酸	還元	
(5)	ニトロベンゼン	酸化	
6	ニトロベンゼン	還元	

(2) 文中の ウ・エ に当てはまる物質名と色の組合せはどれか。

ウ I 1 さらし粉 赤紫色 (2) さらし粉 黄色 (3) さらし粉 白色 (4) 塩化鉄(Ⅲ) 白色 (5) 塩化鉄(Ⅲ) 黄色 (6) 塩化鉄(Ⅲ) 赤色

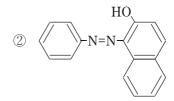
(3) 文中の

オ・カ

に当てはまる語句の組合せはどれか。

32

	t	ħ
	7)	//
1	加水分解	ジアゾ化
2	加水分解	カップリング
3	ジアゾ化	加水分解
4	ジアゾ化	カップリング
(5)	カップリング	加水分解
6	カップリング	ジアゾ化


(4) 化合物 X を加熱すると分解が起こり、気体が発生した。発生した気体はどれ

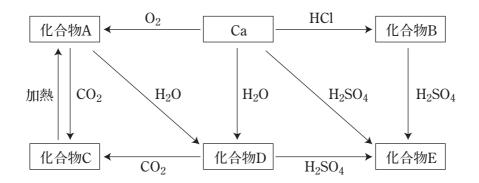
か。 33

- ① 水素
- ② 酸素
- ③ 窒素

- ④ 二酸化炭素
- ⑤ 塩素
- ⑥ 二酸化窒素
- (5) 化合物 Y の構造として適当なものはどれか。 34

① /N=N-/OH

3 N_2C1


⑤ NH₃Cl

⑥ **NO**2

「ⅢA,ⅢB は選択問題です。問題冊子表紙で指定された科目を解答しなさい。` 「ⅢA は医療保健学部受験生が,ⅢB は薬学部受験生が解答しなさい。

Ⅲ A 次の[問1], [問2]に答えなさい。(21点)

[問1] 次図はカルシウムとその化合物についての反応系統図である。

これについて、下の(1)~(4) の問いに答えなさい。答は、次の解答群の中から最も適当なものを1つ選び、マークしなさい。

〔解答群〕 ① 化合物 A ② 化合

② 化合物 B ③ 化合物 C

④ 化合物 D ⑤ 化合物 E

(1) 水和物はセッコウとよばれ, 医療用のギプスなどに用いられるものはどれか。 35

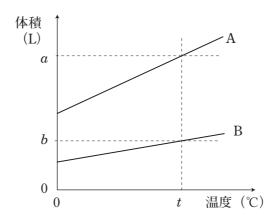
- (2) 結晶は中性の化合物で広く気体の乾燥剤として用いられるが、アンモニアの乾燥には**適さないもの**はどれか。 36
- (3) 塩素と反応させた生成物が、漂白剤として用いられるものはどれか。
- (4) 大理石や卵の殼の主成分で、歯磨き粉の原料などに用いられるものはどれか。 38

[問2] 体積を変えることができる容器内に、エチレンと水素の混合気体を、標準 状態で500 mL 入れて反応させたところ、水素はすべて反応した。反応後の 混合気体の体積は、標準状態で350 mL になり、ここへ<u>臭素水</u>を加えると臭 素の色が脱色された。

これについて、次の(1)~(3) の問いに答えなさい。答は、それぞれの解答群の中から最も適当なものを1つ選び、マークしなさい。

			,		
	線部の臭素 淡桃色	《水の色はどれた ② 黄緑色	3°。 39 3 赤褐色	④ 黒紫色	⑤ 濃青色
_			せる操作はどれか。	40	
(1)	炭化カルシ	/ウムに水を加え	える。		
2	酢酸カルシ	ウムを乾留する	ố 。		
3	エタノール	に濃硫酸を加え	えて 140 ℃で加熱	する。	
4	エタノール	/に濃硫酸を加え	えて 160 ℃で加熱 [、]	する。	
(5)	ジメチルエ	ーテルに濃硫酸	変を加えて 140 ℃	で加熱する。	
6	ジメチルエ	ーテルに濃硫酸	後を加えて 160 ℃	で加熱する。	
(3) 反	応前の混合	気体中に含まれ	れるエチレンの , {	体積の割合は何%	ゟか 。
4	1 %				

② 30 ③ 40 ④ 50

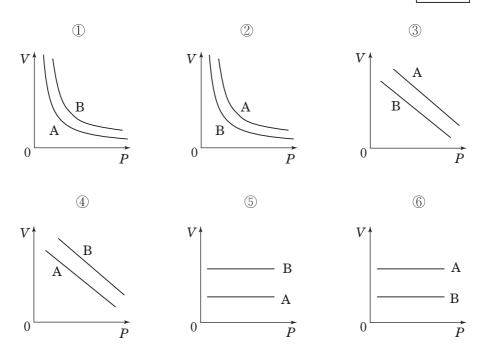

(7) 80

6 70

① 20 ⑤ 60 ⅢA,ⅢBは選択問題です。問題冊子表紙で指定された科目を解答しなさい。ⅢAは医療保健学部受験生が,ⅢBは薬学部受験生が解答しなさい。

Ⅲ 尺 次の[問1], [問2]に答えなさい。(21点)

[問1] 次のグラフは、一定の圧力下でw[g] の気体 $A \succeq w[g]$ の気体Bについて、温度(\mathbb{C})と体積(\mathbb{L})の関係を示したものである。


これについて、(1)~(3) の問いに答えなさい。答は、最も適当なものをそれぞれの解答群の中から1つ選び、マークしなさい。

(1) 気体Aの分子量を $M_{\rm A}$ としたとき、気体Bの分子量を $M_{\rm A}$, a, b を用いて表した式はどれか。 35

- \bigcirc aM_A
- ② $bM_{\rm A}$
- $3 \frac{bM_{\rm A}}{a}$

- \bigcirc $\frac{aM_{\rm A}}{b}$
- \bigcirc $\frac{aM_{\rm A}}{a+b}$

(2) 気体Aと気体Bそれぞれw[g]を容器に入れ、温度を一定に保ちながら、 圧力と体積を変化させた。このときの変化を表すグラフはどれか。 **36**

(3) 理想気体と実在気体に関する次の記述のうち、誤っているものはどれか。

- ① 理想気体は分子間にはたらく力を0と仮定している。
- ② 理想気体は分子自身の体積を0と仮定している。
- ③ 高温では実在気体は理想気体に近づく。
- ④ 低圧では実在気体は理想気体に近づく。
- ⑤ 沸点の低い物質の気体ほど状態方程式からのずれが大きい。

[問2] 酢酸とエタノールの混合物を加熱すると酢酸エチルが生成し、平衡状態に なる。

 $CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$

酢酸 1.0 mol とエタノール 0.80 mol に触媒として濃硫酸を加えて、混合物 の体積を $100\,\mathrm{mL}$ とした。温度を $t_1[\mathbb{C}]$ に保ち平衡状態となったとき,酢 酸は 0.40 mol 残っていた。反応の前後で化合物の蒸発は起こらず、混合物 の体積も変化しなかった。

これについて、次の(1)~(4)の問いに答えなさい。答は、それぞれの解答 群の中から最も適当なものを1つ選び、マークしなさい。

(1) 酢酸エチル生成反応における平衡定数 K を表す式はどれか。

 $K = \frac{[\text{CH}_3\text{COOC}_2\text{H}_5]}{[\text{CH}_3\text{COOH}]}$

②
$$K = \frac{[CH_3COOC_2H_5]}{[CH_2COOH][C_2H_5OH]}$$

 $K = \frac{[\text{CH}_3\text{COOC}_2\text{H}_5][\text{H}_2\text{O}]}{[\text{CH}_3\text{COOH}][\text{C}_2\text{H}_5\text{OH}]}$

$$(4) \quad K = \frac{[CH_3COOH]}{[CH_3COOC_2H_5]}$$

 $(5) K = \frac{[CH_3COOH][C_2H_5OH]}{[CH_3COOC_2H_5]}$

$$(6) \quad K = \frac{[\text{CH}_3\text{COOH}][\text{C}_2\text{H}_5\text{OH}]}{[\text{CH}_3\text{COOC}_2\text{H}_5][\text{H}_2\text{O}]}$$

(2) 温度 *t*₁[℃] における平衡定数はどれか。

- ① 0.22 ② 0.67 ③ 1.5
- (4) 3.0
- (5) 4.5 (6) 7.5

(3) 触媒の濃硫酸を用いずに反応させたとき、逆反応の反応速度および平衡時の 酢酸エチルの物質量は、触媒を用いたときと比べてどのように変化するか。

40

	逆反応の速度	平衡時の酢酸エチルの物質量	
1	速くなる	増加する	
2	速くなる	減少する	
3	速くなる	変化しない	
4	遅くなる	増加する	
(5)	遅くなる	減少する	
6	遅くなる	変化しない	
7	変化しない	増加する	
8	変化しない	減少する	
9	変化しない	変化しない	

(4) 平衡状態になっている混合物に、0.20 mol のエタノールを加え、温度を $t_2[\mathbb{C}]$ に保って、しばらく放置した。平衡状態となったとき、酢酸エチルは 全部で何mol生成しているか。ただし、温度 t_2 [\mathbb{C}] における平衡定数は4.0とする。 41 mol

- ① 0.20
 - ② 0.32 ③ 0.40 ④ 0.47

- ⑤ 0.52
- (a) 0.60 (b) 0.67
- (8) 0.80

下書き